34

RESINE A SCAMBIO IONICO DUPONT DUPONT ION EXCHANGE RESINS

AMBERLITE™ IRC83 H

DUPONT.

AMBERLITE™ IRC83 H Ion Exchange Resin

Gaussian, Acrylic, Macroporous, Weak Acid Cation Exchange Resin for Industrial Demineralization, Softening, and Dealkalization Applications

Description

AMBERLITE[™] IRC83 H Ion Exchange Resin is a generalpurpose dealkalization and softening resin with a longestablished track record of reliable performance in the industry. This industry-staple resin is designed for co-flow regenerated systems in variety of industrial water treatment applications.

When AMBERLITE[™] IRC83 H is operated in the Na-form, it will remove total hardness even in high salinity waters such as those

in oilfield SAGD systems. When operated in the H-form, it will remove only the hardness associated with alkalinity—a weak acid cation resin operated in the H-form is well-suited for use with strong acid cation resins to improve overall efficiency and throughput of a demineralization system by reducing the hardness exposure on the strong acid cation resin.

In Na-form softening operation, AMBERLITE[™] IRC83 H enables improved operating capacity for total hardness versus other weak acid cation resins currently available, which allows more competitive vessel design or extended production capacity when installed in existing systems.

In dealkalization, AMBERLITE[™] IRC83 H has demonstrated improved operating capacity versus other weak acid cation resins currently available, which allows users to simultaneously minimize operating costs and environmental impacts while also preserving precious raw water resources under the right conditions.

In reverse osmosis pretreatment, AMBERLITE [™] IRC83 H can protect the membrane from hardness scaling, which can improve system recovery and operational reliability and can eliminate the use of chemicals such as antiscalants or acids for RO feedwater pH control. The resin's ability to soften high-salinity feedwaters enables the RO to reliably operate under extremely variable and/or harsh conditions, such as with wastewater reuse or minimal liquid discharge.

Applications

- Demineralization, ideally when treating water with:
 - High oxidant level (among WAC resins)
 - Total hardness to alkalinity ratio > 0.8
- Industrial softening
- High-salinity softening (operated in the Na-form)
- Dealkalization
- Reverse osmosis pretreatment
- Steam-assisted gravity drainage (SAGD)

System Designs •

Co-current

Hydrotecnologies

Historical Reference

Typical Properties

AMBERLITE[™] IRC83 H Ion Exchange Resin has previously been sold as AMBERLITE[™] IRC83 Ion Exchange Resin.

Physical Properties	
Copolymer	Crosslinked acrylic
Matrix	Macroporous
Туре	Weak acid cation
Functional Group	Carboxylic acid
Physical Form	Off-white, opaque, spherical beads
Chemical Properties	
Ionic Form as Shipped	H⁺
Total Exchange Capacity	≥4.7 eq/L (H ⁺ form)
Water Retention Capacity	40.0 – 50.0% (H ⁺ form)
Particle Size §	
Particle Diameter	500 – 750 μm
Uniformity Coefficient	≤1.6
< 300 µm	≤ 1.0%
> 1180 µm	≤1.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$H^+ \rightarrow Na^+ \le 60\%$
Density	
Particle Density	1.21 g/mL
Shipping Weight	760 g/L

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Suggested Operating Conditions

Temperature Range		
H^+ form	5–120°C (41–248°F)	
Na ⁺ form	5–120°C (41–248°F)	
pH Range		
Service Cycle	6-14	
Stable	0 – 14	

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE[™] IRC83 H Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE [™] IRC83 H as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed.

AMBERLITE™ HPR8300 H

OUPONT

AMBERLITE™ HPR8300 H Ion Exchange Resin

Acrylic, Macroporous, Weak Acid Cation Exchange Resin for Industrial Demineralization, Softening, and Dealkalization Applications

Description

AMBERLITE [™] HPR8300 H Ion Exchange Resin is a highquality resin for use in industrial demineralization and softening applications when high performance and cost-effective operation is required. The exceptionally high total capacity and the particle size of the resin help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and water usage.

When AMBERLITE[™] HPR8300 H is operated in the Na-form, it will remove total hardness even in high salinity waters. When operated in the H-form, it will remove only the hardness associated with alkalinity—a weak acid cation resin operated in the H-form is well-suited for use with strong acid cation resins to improve overall efficiency and throughput of a demineralization system by reducing the hardness exposure on the strong acid cation resin.

In Na-form softening operation, AMBERLITE [™] HPR8300 H enables improved operating capacity for total hardness versus other weak acid cation resins currently available, which allows more competitive vessel design or extended production capacity when installed in existing systems.

In dealkalization, AMBERLITE [™] HPR8300 H has demonstrated improved operating capacity versus other weak acid cation resins currently available, which allows users to simultaneously minimize operating costs and environmental impacts while also preserving precious raw water resources under the right conditions.

In reverse osmosis pretreatment, AMBERLITE[™] HPR8300 H can protect the membrane from hardness scaling, which can improve system recovery and operational reliability and can eliminate the use of chemicals such as antiscalants or acids for RO feedwater pH control. The resin's ability to soften high-salinity feedwaters enables the RO to reliably operate under extremely variable and/or harsh conditions, such as with wastewater reuse or minimal liquid discharge.

AMBERLITE[™] HPR8300 H is compatible with all system designs and bed configurations. In layered beds, AMBERLITE[™] HPR8300 H should be paired with gel AMBERLITE[™] HPR1300 H Ion Exchange Resin for the highest operating capacity and for more challenging circumstances, AMBERLITE[™] HPR2800 H Ion Exchange Resin would be the preferred option.

Hydrotecnologies

Applications	 Demineralization, ideally when treating water with: High oxidant level (among WAC resins) Total hardness to alkalinity ratio > 0.8 Industrial softening High-salinity softening (operated in the Na-form) Dealkalization Reverse osmosis pretreatment 	
System Designs	Compatible with all system tec Co-current Counter-current / Hold-dow Layered beds Packed beds	hnologies and bed configurations:
Historical Reference	AMBERLITE ™ HPR8300 H Ic MARATHON ™ 8300 Ion Exch	on Exchange Resin has previously been sold as DOWEX ange Resin.
Typical Properties	Physical Properties Copolymer Matrix Type Functional Group Physical Form	Crosslinked acrylic Macroporous Weak acid cation Carboxylic acid Off-white, opaque, spherical beads
	Chemical Properties Ionic Form as Shipped Total Exchange Capacity Water Retention Capacity	H ⁺ ≥ 4.7 eq/L (H ⁺ form) 40.0 – 50.0% (H ⁺ form)
	Particle Size § Particle Diameter Uniformity Coefficient < 300 μm Stability Whole Uncracked Beads	450 – 600 μm ≤ 1.4 ≤ 0.1% ≥ 95%
	Swelling Density Particle Density Shipping Weight	H ⁺ →Na ⁺ :60% 1.21 g/mL 760 g/L
	[§] For additional particle size information (Form No. 177-01775).	n, please refer to the Particle Size Distribution Cross Reference Chart
Suggested Operating Conditions	Temperature Range H ⁺ form Na ⁺ form pH Range Service Cycle	5 – 120°C (41 – 248°F) 5 – 120°C (41 – 248°F) 6 – 14
	Stable	0-14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE [™] HPR8300 H Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR8300 H as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed.

Product Stewardship

DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products—from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice

DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

Please be aware of the following:

 WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.

< DUPONT >

AmberLite™ HPR8400 H Ion Exchange Resin

Acrylic, Macroporous, Weak Acid Cation Exchange Resin for Industrial Demineralization, Softening, and Dealkalization Applications

Description

AmberLite[™] HPR8400 H Ion Exchange Resin is a high-quality resin for use in industrial demineralization and softening applications when high performance and cost-effective operation is required. The exceptionally high total capacity and the larger particle size of the resin help yield excellent operating capacity with low pressure drop, while reducing chemical regenerant and water usage.

When operated in the H-form, it will remove only the hardness associated with alkalinity—a weak acid cation resin operated in the H-form is well-suited for use with strong acid cation resins to improve overall efficiency and throughput of a demineralization system by reducing the hardness exposure on the strong acid cation resin.

AmberLite[™] HPR8400 H offers increased total capacity compared to the existing WAC resins available, which could allow users to simultaneously minimize operating costs and environmental impacts while also preserving precious raw water resources under the right operating conditions.

When AmberLite[™] HPR8400 H is operated in the Na-form, it will remove total hardness even in high salinity waters.

In Na-form softening operation, AmberLite[™] HPR8400 H enables improved operating capacity for total hardness versus other weak acid cation resins currently available, which allows more competitive vessel design or extended production capacity when installed in existing systems.

In reverse osmosis pretreatment, AmberLite[™] HPR8400 H can protect the membrane from hardness scaling, which can improve system recovery and operational reliability and can eliminate the use of chemicals such as antiscalants or acids for RO feedwater pH control. The resin's ability to soften high-salinity feedwaters enables the RO to reliably operate under extremely variable and/or harsh conditions, such as with wastewater reuse or minimal liquid discharge.

Applications

- Demineralization, ideally when treating water with:
 - High oxidant level (among WAC resins)
 - Total hardness to alkalinity ratio > 0.8
- Industrial softening
- High-salinity softening (operated in the Na-form)
- Dealkalization
- Reverse osmosis pretreatment

System Designs

- Co-current
- Counter-current / Hold-down
- Packed beds

Typical Properties	Physical Properties		
	Copolymer	Crosslinked acrylic	
	Matrix	Macroporous	
	Туре	Weak acid cation	
	Functional Group	Carboxylic acid	
	Physical Form Off-white, opaque, spherical beads		
	Chemical Properties		
	Ionic Form as Shipped	H⁺	
	Total Exchange Capacity	≥4.7 eq/L (H ⁺ form)	
	Water Retention Capacity 40.0 – 50.0% (H ⁺ form)		
	Particle Size [§]		
	Particle Diameter	600 – 800 μm	
	Uniformity Coefficient	≤ 1.5	
	< 300 µm	≤0.1%	
	Stability		
	Whole Uncracked Beads	≥95%	
	Swelling $H^+ \rightarrow Na^+: 60\%$		
	Density		
	Particle Density	1.21 g/mL	
	Shipping Weight	760 g/L	
	8		—

⁹ For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 45-D00954-en).

Suggested Operating Conditions

Hydraulic

Characteristics

Temperature Range	
H ⁺ form	5–120°C (41–248°F)
Na ⁺ form	5–120°C (41–248°F)
pH Range	
Service Cycle	6-14
Stable	0-14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 45-D01131-en) in water treatment, please refer to our Tech Fact.

Estimated bed expansion of AmberLite[™] HPR8400 H Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AmberLite[™] HPR8400 H as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed.

Figure 2: Pressure Drop

TAPTEC™ HCRSS Na

OUPONT

TAPTEC™ HCRSS Na Ion Exchange Resin

thermal stability. TAPTEC™ HCRSS Na can be used for domestic softening applications.				
Applications Domestic softening				
Typical Properties Physical Properties	Physical Properties			
Copolymer Styrene-divinylbenzene				
Matrix Gel				
Type Strong acid cation				
Functional Group Sulfonic acid				
Physical Form White to amber, translucent, spherical beads				
Chemical Properties				
Ionic Form as Shipped Na⁺				
Total Exchange Capacity ≥ 1.9 eq/L				
Water Retention Capacity 48 – 52%				
Acidity Range 7.0 – 10.5				
Particle Size §	Particle Size §			
300 – 1200 μm ≥ 90%				
< 300 µm ≤ 1%				
Purity				
Color Throw, as packaged ≤ 20 APHA units				
Stability	Stability			
Whole Uncracked Beads ≥ 90%				
Swelling $Ca^{2+} \rightarrow Na^{+}: 5\%$				
Density				
Particle Density 1.3 g/mL				
Shipping Weight 800 g/L				
[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Char</u> (Form No. 177-01775).				
Suggested Maximum Operating Temperature 120°C (248°F)				
Operating pH Range 0 – 14				
Conditions Bed Depth, min. 800 mm (2.6 ft)				
Flowrates				
Service 5 – 50 BV*/h (0.63 – 6.3 gpm/ft ³)	5 – 50 BV*/h (0.63 – 6.3 gpm/ft ³)			
Backwash See Figure 1				
Regeneration $1 - 10 \text{ m/h} (0.4 - 4 \text{ gpm/ft}^2)$				
Displacement Rinse $1 - 10 \text{ m/h} (0.4 - 4 \text{ gpm/ft}^2)$				
Fast Rinse 5 – 50 BV/h (0.63 – 6.3 gpm/ft ³)				
Total Rinse Requirement 3 – 6 BV				

* 1 BV (Bed Volume) = 1 m^3 solution per m^3 resin or 7.5 gal per ft³ resin

NaCl

8 – 12%

Regenerant

Concentration

Hydraulic Characteristics

Estimated bed expansion of TAPTEC[™] HCRSS Na Ion Exchange Resin as a function of backwash flowrate and ionic form at 25°C (77°F) is shown in Figure 1. The flowrate necessary to achieve a desired bed expansion for other water temperatures can be calculated with the provided equations.

Estimated pressure drop for TAPTEC[™] HCRSS Na as a function of service flowrate at 20°C (68°F) is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed. Estimated pressure drop at other water temperatures can be calculated with the provided equations.

ProductDuPont has a fundamental concern for all who make, distribute, and use its products,
and for the environment in which we live. This concern is the basis for our product
stewardship philosophy by which we assess the safety, health, and environmental
information on our products and then take appropriate steps to protect employee and
public health and our environment. The success of our product stewardship program
rests with each and every individual involved with DuPont products—from the initial
concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

Please be aware of the following:

 WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.

Regulatory Note

This product may be subject to drinking water application restrictions in some countries; please check the application status before use and sale.

AMBERLITE™ FPC88

OUPONT

AMBERLITE™ FPC88 Ion Exchange Resins

Macroporous, Strong Acid Cation Resin for Sweetener Applications

AMBERLITE™ FPC88 Ion Exchange Resins are macroporous, strong acid cation resins **Description** for use in deashing sweeteners to produce low-conductivity syrups, decalcifying beet sugar, purifying organic acids, or deashing/demineralizing fruit juices and other beverages. The macroporous matrix provides excellent mechanical strength and good operating capacity. AMBERLITE™ FPC88 H Ion Exchange Resin is shipped in the regenerated (H⁺) ionic form for deashing processes. AMBERLITE™ FPC88 Na Ion Exchange Resin is shipped in the Na⁺ ionic form for softening/decalcification processes, or when the most stable ionic form is desired for long-duration shipments or inventory safety stock. Corn and starch sweetener deashing **Applications** Beet sugar decalcification Citric and lactic acid deashing Fruit juice deashing Beverage demineralization **Physical Properties Typical Properties** Copolymer Styrene-divinylbenzene Matrix Macroporous Type Strong acid cation Functional Group Sulfonic acid Physical Form White to yellow, opaque, spherical beads **Chemical Properties** Ionic Form as Shipped H⁺ Na⁺ Total Exchange Capacity ≥ 1.7 eq/L ≥ 1.8 eq/L Water Retention Capacity 46-56% 42-48% Particle Size § Particle Diameter 300 – 1200 µm 300 – 1200 µm <400 µm ≤5% ≤5% > 1180 µm ≤5% ≤5% Stability Whole Uncracked Beads ≥95% ≥95% Swelling $Na^+ \rightarrow H^+: 5\%$ $Na^+ \rightarrow H^+: 5\%$ Density Particle Density 1.2 g/mL 1.2 g/mL Shipping Weight 770 g/L 800 g/L

> § For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Suggested	Maximum Operating Temperature (H^{+} form)	93°C (200°F)
Operating	pH Range	0 - 14
Conditions	Bed Depth, min.	910 mm (3.0 ft)
Conditions	Flowrates	
	Service	2-4 BV*/h
	Backwash	See Figure 1
	Fast Rinse (if applicable)	2 – 10 BV/h
	Contact Time	
	Regeneration	≥ 30 – 45 minutes
	Displacement Rinse	≥ 30 – 45 minutes
	Total Rinse Requirement	3-6 BV
	Regenerant	HCI
	Concentration	7%
	Level, 100% basis [‡]	96 – 112 kg/m ³ (6 – 7 lb/ft ³)
	Temperature, max.	93°C (200°F)

* 1 BV (Bed Volume) = 1 m³ solution per m³ resin or 7.5 gal per ft³ resin

[‡]Regeneration level may be lower for counter-current regeneration systems.

Hydraulic Characteristics

Bed expansion of AMBERLITE[™] FPC88 Ion Exchange Resin as a function of backwash flowrate at 25°C (77°F) is shown in Figure 1. The flowrate necessary to achieve a desired bed expansion for other water temperatures can be calculated with the provided equations.

Pressure drop data for AMBERLITE[™] FPC88 as a function of service flowrate and viscosity is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean feed.

Figure 2: Pressure Drop

Viscosity = 2 – 12 cP

For other temperatures use:

AMBERLITE™ IRA910 CI

OUPONT

AMBERLITE™ IRA910 CI Ion Exchange Resin

	Macroporous, Strong Base Anion (Type II) Exchange Resin for Industrial Demineralization Applications
Description	AMBERLITE [™] IRA910 CI Ion Exchange Resin is a general-purpose demineralization resin with a long-established track record of reliable performance in co-flow regenerated industrial water treatment systems.
	The macroporous structure of AMBERLITE™ IRA910 CI provides excellent resistance to organic fouling and physical stresses. When operated under challenging conditions, it allows increased resin lifetime in operation compared to a gel Type II resin.
	Compared to a Type I strong base anion resin, a Type II resin will yield greater operating capacity due to more complete regeneration. It is best-suited to treat water in which silica and carbon dioxide do not exceed 30% of the total anions and the service and caustic regeneration temperature does not consistently exceed 35°C (95°F).
	For systems that require low silica in the effluent or that operate at higher temperatures, a Type I strong base anion resin is recommended, such as AMBERLITE™ IRA900 CI Ion Exchange Resin.
Applications	 Demineralization, when the treatment goal is: High organic fouling potential Removal of strong and weak acids Dealkalization
System Designs	Co-current

Typical Properties

Physical Properties		
Copolymer	Styrene-divinylbenzene	
Matrix	Macroporous	
Туре	Strong base anion, Type II	
Functional Group	Dimethylethanolammonium	
Physical Form	Pale yellow, opaque, spherical beads	
Chemical Properties		
Ionic Form as Shipped	CI	
Total Exchange Capacity	≥ 1.0 eq/L (Cl [−] form)	
Water Retention Capacity	54.0-61.0% (Cl ⁻ form)	
Particle Size [§]		
Particle Diameter	530 – 800 µm	
Uniformity Coefficient	≤ 1.80	
< 300 µm	≤2.0%	
> 1180 µm	≤5.0%	
Stability		
Whole Uncracked Beads	≥95%	
Swelling	$CI^- \rightarrow OH^-$: 15%	
Density		
Particle Density	1.09 g/mL	
Shipping Weight	700 g/L	

[§] For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 177-01775).

Suggested Operating Conditions

Temperature Range	
OH [−] form	5–35°C (41–95°F)
CI [−] form	5-80°C (41-176°F)
pH Range	
Service Cycle	1 – 14
Stable	0-14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for separate beds (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE™ IRA910 CI Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE™ IRA910 CI as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed.

6.0

5.0

4.0

0*C 3.0

2.0 1.0

0.0

psi/ft

AMBERLITE™ 62i

< DUPONT >

AMBERLITE™ 62i Inert Resin

	Polyethylene, Inert Resin for Industrial Demineralization Applications		
Description	AMBERLITE [™] 62i Inert Resin is a floating, non-functionalized, transparent, amorphous- shaped resin with properties specifically designed for use as an upper layer in up-flow regenerated ion exchange systems, such as UPCORE [™] Packed Bed Systems. This inert resin has a specific gravity lower than water, which ensures it will stay above the ion exchange resin bed. Its self-distributing properties allow it to evenly cover the available cross-sectional area, forming a protective layer that allows dirt and resin fragments to pass through while retaining the resin bed during the compaction/bed-lift step prior to regeneration.		
Applications	 Demineralization Industrial softening Condensate polishing 		
System Designs	 Packed beds for UPCORE[™] Packed Bed Systems or other up-flow regenerated packed beds configured as a layered bed Counter-current / Air hold-down 		
Historical Reference	AMBERLITE™ 62i Inert Re Inert Resin.	sin has previously been sold as DOWEX UPCORE™ IF-62	
Typical Properties	Physical Properties Polymer Type Functional Group Physical Form Particle Size Particle Diameter Density Particle Density Shipping Weight	Polyethylene Inert None White pellets 2.5 – 4.0 mm 0.95 g/mL 620 g/L	
Suggested Operating Conditions	Temperature Range pH Range For additional information re conditions, and regeneratior treatment, please refer to ou	5-110°C (41-230°F) 0-14 garding recommended minimum bed depth, operating conditions for <u>separate beds</u> (Form No. 177-03729) in water ir Tech Fact.	

Hydraulic Characteristics

Estimated pressure drop for AMBERLITE [™] 62i Inert Resin as a function of service flowrate and temperature is shown in Figure 1a and a magnified scale of the same is shown in Figure 1b. These estimated pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed.

Figure 1b: Pressure Drop

Product Stewardship

DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products— from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets ar available from DuPont.

Please be aware of the following:

• WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.

AMBERLITE™ MB20 H/OH

<pre>OUPONT></pre>	AMBERLITE™ MB2	0 H/OH Ion Excha	nge Resin
	Mixture of Gaussian, Gel, St for Industrial Demineralizatio	rong Acid Cation and Stron n Applications	g Base Anion Exchange Resins
Description	AMBERLITE [™] MB20 H/OH Ion Exchange Resin is an equilibrated, homogeneous mixture of a dark strong acid cation and a clear strong base anion exchange resins. It is fully regenerated, ready-to-use, pre-mixed resin developed for the production of high-purity water in working and mixed bed polishing applications. The pre-mixed resin also allows for faster initial rinse-up prior to service, which minimizes rinse wastewater volume.		
Applications	AMBERLITE [™] MB20 H/OH demineralization of water wh of the applications, the condu- and the pH is neutral. If nece components must be separar AMBERLITE [™] MB20 H/OH resin mixture is prepared from manufacturing process ensu- to perform in a highly stable r both working and polishing m separation of cation and anio AMBERLITE [™] MB20 H/OH • Service deionization	is most commonly used in en complete removal of sili- uctivity of the treated water ssary, the resin can be rege- ted by backwashing and reg- is the reference mixed bed n high-quality components res consistency from batch manner delivering high-qual nixed beds. The consistence n resins prior to regeneration a trusted choice for mixed	service deionization for a full ca and CO_2 is required. In most is much lower than 0.1 µS/cm enerated after exhaustion. Both generated separately. for service deionization. The and the proprietary to batch. This enables the resin ity treated water consistently in y in quality combined with visible on make bed pool systems.
	 Mixed bed polishing on Re 	O or demineralized water	5
System Designs	 Externally-regenerated mixed by Non-regenerated mixed by 	ixed beds eds	
Historical Reference	AMBERLITE™ MB20 H/OH AMBERLITE™ MB20 Ion Ex	Ion Exchange Resin has p cchange Resin.	reviously been sold as
Typical Properties		Cation Resin	Anion Resin
5.	Physical Properties		
	Copolymer	Styrene-divinylbenzene	Styrene-divinylbenzene
	Matrix	Gel	Gel
	Туре	Strong acid cation	Strong base anion, Type I
	Functional Group	Sulfonic acid	Trimethylammonium
	Physical Form	Dark amber, translucent,	Clear amber, translucent,
	Valuma Datia	spherical beads	spherical beads
		JU - 44 /0	02 - 30 /0
		ц +	
		11	Un

[§] For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 177-01775).

Operating Capacity

Shipping Weight

< 300 µm

Density

Product Performance

The operating capacity of AMBERLITE™ MB20 H/OH Ion Exchange Resin can be estimated using the following formula, which gives an approximate determination of volume of water that can be treated:

$$BV = rac{500}{TDS \; (meq/L)}$$

or

≤3.0%

710 g/L

where BV (Bed Volume) is the number of liters of a feedwater containing a TDS (Total Dissolved Solids) given in meq/L that can be demineralized with one liter of the resin mixture when run to exhaustion (or US gallons per cubic foot of the resin with TDS as ppm $CaCO_3$).

Treated Water Quality

AMBERLITE[™] MB20 H/OH Ion Exchange Resin provides a high-quality demineralized water with a conductivity < 0.1 µS/cm and neutral pH that will satisfy most of the cartridge and laboratory applications.

Suggested	Temperature Range (H ⁺ /OH ⁻ form) $^{+}$	5-60°C (41-140°F)
Operating	pH Range	0-14
Conditions	 [‡] Operating mixed beds at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact the purity of the loop and resin life. Contact our technical representative for details. For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>mixed beds</u> (Form No. 177-03705) or <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Facts. 	
Hydraulic Characteristics	Estimated bed expansion of the cation co component (Figure 1b) of AMBERLITE™ of backwash flowrate and temperature are	mponent (Figure 1a) and of the anion MB20 H/OH Ion Exchange Resin as a function e shown.

Estimated pressure drop for AMBERLITE [™] MB20 H/OH as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed.

Figure 1b: Backwash Expansion – Anion

TAPTEC™ 350 UPS Na

No.

	TAPTEC [™] 350 UPS Na Ion Exchange Resin Drinking Water-grade, Uniform Particle Size, Strong Acid Cation Exchange Resin for Domestic Softening with High Salt Efficiency			
Description	TAPTEC™ 350 UPS Na lo acid cation resin. The smal capacity, which results in a	on Exchange Resin is a uniform particle size, gel, strong ll, 350-μm beads yield an outstanding operating high regeneration efficiency.		
	TAPTEC™ 350 UPS Na ha	as excellent mechanical strength and very good stability		
	to oxidation.			
Applications	Domestic softening			
Typical Properties	Physical Properties			
	Copolymer	Styrene-divinylbenzene		
	Matrix	Gel		
	Туре	Strong acid cation		
	Functional Group	Sulfonic acid		
	Physical Form	White to yellow, translucent, spherical beads		
	Chemical Properties	Chemical Properties		
	Ionic Form as Shipped	n as Shipped Na⁺		
	Total Exchange Capacity	≥ 2.2 eq/L		
	Water Retention Capacity	Retention Capacity 38 – 45%		
	Particle Size §			
	Particle Diameter 350 ± 50 µm			
	Uniformity Coefficient	Uniformity Coefficient ≤ 1.1		
	< 200 µm	≤ 0.5%		
	Stability			
	Whole Uncracked Beads	≥ 95%		
	Swelling	$Ca^{2+} \rightarrow Na^+$: 4%		
	Density			
	Particle Density	1 30 g/ml		
	Shipping Weight	830 g/l		
	[§] For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart			
	(Form No. 177-01775).			
Suggested	Maximum Operating Temperat	ture 130°C (266°F)		
Operating	pH Range	0 – 14		
Conditions	Bed Depth, min.	200 mm (0.7 ft)		
	Flowrates			
	Service	5 – 200 m/h (2 – 80 gpm/ft ²)		
	Backwash	See Figure 1		
	Regeneration	5 – 20 m/h (2 – 8 gpm/ft ²)		
	Displacement Rinse	5 – 20 m/h (2 – 8 gpm/ft ²)		
	Fast Rinse	5 – 200 m/h (2 – 80 gpm/ft²)		
	Total Rinse Requirement	2 – 5 BV*		
	Regenerant	NaCl		
	Concentration	5 – 25%		

* 1 BV (Bed Volume) = 1 m^3 solution per m^3 resin or 7.5 gal per ft³ resin

Hydraulic Characteristics

Estimated bed expansion of TAPTEC[™] 350 UPS Na Ion Exchange Resin as a function of backwash flowrate and ionic form at 25°C (77°F) is shown in Figure 1. The flowrate necessary to achieve a desired bed expansion for other water temperatures can be calculated with the provided equations.

Estimated pressure drop for TAPTEC[™] 350 UPS Na as a function of service flowrate at 20°C (68°F) is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water. Estimated pressure drop at other water temperatures can be calculated with the provided equations.

For other temperatures use: F_T = $F_{25^{cc}}$ [1 + 0.008 (1.8T $_{^{cc}}$ - 45)], where F \equiv m/h F_T = $F_{77^{cr}F}$ [1 + 0.008 (T $_{^{cF}}$ - 77)], where F \equiv gpm/ft²

For other temperatures use: P_T = $P_{20^\circ C}$ / (0.026T $_{^\circ C}$ + 0.48)], where P \equiv bar/m P_T = $P_{68^\circ F}$ / (0.014T $_{^\circ F}$ + 0.05)], where P \equiv psi/ft

Product Stewardship	DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products—from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.
Customer Notice	DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.
	Please be aware of the following: WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.
Regulatory Note	This product may be subject to drinking water application restrictions in some countries; please check the application status before use and sale.

AMBERLITE™ HPR1100 Na

AMBERLITE™ HPR1100 Na Ion Exchange Resin

Uniform Particle Size, Gel, Strong Acid Cation Exchange Resin for Industrial Softening Applications

Description AMBERLITE[™] HPR1100 Na Ion Exchange Resin is a highquality resin for use in industrial softening applications when high performance and cost-effective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and rinse water usage.

Applications

- Industrial softening
- System Designs
- Co-current
- Counter-current / Hold-down
 Decked hade
- Packed beds

Historical Reference

AMBERLITE[™] HPR1100 Na Ion Exchange Resin has previously been sold as DOWEX MARATHON[™] C Na Ion Exchange Resin.

Typical Properties

Physical Properties	
Copolymer	Styrene-divinylbenzene
Matrix	Gel
Туре	Strong acid cation
Functional Group	Sulfonic acid
Physical Form	Amber, translucent, spherical beads
Chemical Properties	
Ionic Form as Shipped	Na ⁺
Total Exchange Capacity	≥2.0 eq/L (Na⁺form)
Water Retention Capacity	42.0-48.0% (Na ⁺ form)
Particle Size [§]	
Particle Diameter	$585 \pm 50 \mu\text{m}$
Uniformity Coefficient	≤ 1.10
< 300 µm	≤0.5%
> 850 μm	≤ 5.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$Ca^{2+} \rightarrow Na^+: 5\%$
	$Na^+ \rightarrow H^+: 8\%$
Density	
Particle Density	1.29 g/mL
Shipping Weight	850 g/L

§ For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 177-01775).

UUUUUUU	Temperature Range (Na Torm)	5–150°C (41–302°F)
Operating	pH Range	
Conditions	Service Cycle	1 – 14
conultions	Stable	0-14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE[™] HPR1100 Na Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR1100 Na as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

Product Stewardship

DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products— from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice

DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

Please be aware of the following:

WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.

AMBERLITE™ HPR1200 Na

< DUPONT >

AMBERLITE™ HPR1200 Na Ion Exchange Resin

Uniform Particle Size, Gel, Strong Acid Cation Exchange Resin for Industrial Softening Applications

Description AMBERLITE[™] HPR1200 Na Ion Exchange Resin is a highquality resin for use in industrial softening applications when high performance and cost-effective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and rinse water usage.

AMBERLITE [™] HPR1200 Na is compatible with all system technologies. It is available for demineralization applications when the sodium-form is preferred by the user. For more details on the use of this product for demineralization, refer to the product data sheet for AMBERLITE [™] HPR1200 H Ion Exchange Resin.

Applications • Industrial softening

• Demineralization (when the sodium-form is preferred by the user)

System Designs Compatible with all system technologies: Co-current Counter-current / Hold-down

- Packed beds
- Mixed beds

HistoricalAMBERLITE™ HPR1200 Na Ion Exchange Resin has previously been sold as
DOWEX MARATHON™ 1200 Na Ion Exchange Resin.

Typical Properties

Physical Properties	
Copolymer	Styrene-divinylbenzene
Matrix	Gel
Туре	Strong acid cation
Functional Group	Sulfonic acid
Physical Form	Dark brown, translucent, spherical beads
Chemical Properties	
Ionic Form as Shipped	Na ⁺
Total Exchange Capacity	≥2.0 eq/L (Na ⁺ form)
Water Retention Capacity	43.0 – 50.0% (Na⁺ form)
Particle Size §	
Particle Diameter	585 ± 50 μm
Uniformity Coefficient	≤1.10
< 300 µm	≤0.1%
> 850 µm	≤3.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$Ca^{2+} \rightarrow Na^+$: 5%
	$Na^+ \rightarrow H^+: 8\%$
Density	
Particle Density	1.29 g/mL
Shipping Weight	820 g/L

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Temperature Range (Na ⁺ form)	5–150°C (41–302°F)
pH Range	
Service Cycle	1 – 14
Stable	0-14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>mixed beds</u> (Form No. 177-03705) or <u>separate</u> <u>beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Facts.

Hydraulic Characteristics

Suggested Operating Conditions

Estimated bed expansion of AMBERLITE[™] HPR1200 Na Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR1200 Na as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

AMBERLITE™ HPR1200 H

< DIIPANT>	AMBERLITE™ HPR1200 H Ion Exchange Resin
	Uniform Particle Size, Gel, Strong Acid Cation Exchange Resin for Industrial Demineralization Applications
Description	AMBERLITE [™] HPR1200 H Ion Exchange Resin is the go-to, high-quality resin for use in industrial demineralization applications when high performance and cost-effective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and rinse water usage. AMBERLITE [™] HPR1200 H is compatible with all system technologies; it has the flexibility to be used in both the lead cation bed and in mixed bed polishers, allowing users to inventory only one strong acid cation resin for their demineralization needs. In mixed bed applications, the dark color of this cation resin is designed to allow easy visual distinction from the light-colored anion resin following backwash separation. AMBERLITE [™] HPR1200 Na Ion Exchange Resin is available for industrial softening or demineralization applications when the sodium-form is preferred by the user.
Resin Pairings	 Recommended pairing: AMBERLITE™ HPR4200 OH Ion Exchange Resin (gel) AMBERLITE™ HPR4800 OH Ion Exchange Resin (gel)
	 Additional pairing: AMBERLITE[™] HPR4200 CI Ion Exchange Resin (gel) AMBERLITE[™] HPR4800 CI Ion Exchange Resin (gel) AMBERLITE[™] HPR4700 OH or CI Ion Exchange Resin (gel)
Applications	DemineralizationMixed bed polishing
System Designs	Compatible with all system technologies: • Co-current • Counter-current / Hold-down • Packed beds • Mixed beds
Historical Reference	AMBERLITE™ HPR1200 H Ion Exchange Resin has previously been sold as DOWEX MARATHON™ 1200 H Ion Exchange Resin.

Typical Properties

Physical Properties	
Copolymer	Styrene-divinylbenzene
Matrix	Gel
Туре	Strong acid cation
Functional Group	Sulfonic acid
Physical Form	Dark brown, translucent, spherical beads
Chemical Properties	
Ionic Form as Shipped	H⁺
Total Exchange Capacity	≥ 1.8 eq/L (H ⁺ form)
Water Retention Capacity	50.0 - 56.0% (H ⁺ form)
Particle Size §	
Particle Diameter	600 ± 50 μm
Uniformity Coefficient	≤ 1.10
< 300 µm	≤0.1%
> 850 μm	≤3.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$Na^+ \rightarrow H^+: 8\%$
Density	
Particle Density	1.20 g/mL
Shipping Weight	785 g/L

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Temperature Range (H ⁺ form)	5–120°C (41–248°F)
pH Range	
Service Cycle	1 – 14
Stable	0-14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>mixed beds</u> (Form No. 177-03705) or <u>separate</u> beds (Form No. 177-03729) in water treatment, please refer to our Tech Facts.

Hydraulic Characteristics

Suggested Operating Conditions

Estimated bed expansion of AMBERLITE[™] HPR1200 H Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR1200 H as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

OUPONT

AMBERLITE™ HPR9500 Ion Exchange Resin

Uniform Particle Size, Macroporous, Weak Base Anion Exchange Resin for Industrial Demineralization Applications

Description AMBERLITE [™] HPR9500 Ion Exchange Resin is a high-quality resin for use in industrial demineralization applications when high performance and cost-effective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and water usage.

Weak base anion resins are well-suited for use with strong base anion resins to improve overall efficiency and throughput of a demineralization system. It effectively removes mineral acids and organics, reducing the ionic load on the strong base anion resin and also protecting it from organic fouling. The weak base anion resin increases a system's overall capacity to remove organics.

AMBERLITE[™] HPR9500 displays excellent thermal stability. It has high kinetics, which yields good operating capacity even in low-temperature operations. The macroporous structure allows for easy release of natural organic molecules providing good organic fouling resistance.

AMBERLITE[™] HPR9500 offers a quick start-up in a single bed or when paired with an OH-form strong base anion in layered bed systems.

Applications	 Demineralization, ideally when treating water with: High organic fouling potential High percentage of mineral acidity (FMA) Partial demineralization when weak acid removal is not required
System Designs	 Compatible with all system technologies and bed configurations: Co-current Counter-current / Hold-down Layered beds Packed beds
Historical	AMBERLITE™ HPR9500 Ion Exchange Resin has previously been sold a

AMBERLITE[™] HPR9500 Ion Exchange Resin has previously been sold as DOWEX MARATHON[™] WBA Ion Exchange Resin.

Typical Properties

Physical Properties	
Copolymer	Styrene-divinylbenzene
Matrix	Macroporous
Туре	Weak base anion
Functional Group	Tertiary amine
Physical Form	Off-white, opaque, spherical beads
Chemical Properties	
Ionic Form as Shipped	Free base (FB)
Total Exchange Capacity	≥ 1.3 eq/L (FB form)
Water Retention Capacity	54.0-60.0% (FB form)
Particle Size [§]	
Particle Diameter	550 ± 50 μm
Uniformity Coefficient	≤1.1
< 300 µm	≤0.2%
>850 μm	≤ 1.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$FB \rightarrow HCI: 20\%$
Density	
Particle Density	1.05 g/mL
Shipping Weight	640 g/L

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Temperature Range (FB form)	5–60°C (41–140°F)
pH Range	
Service Cycle	0-6
Stable	0 – 14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Suggested Operating Conditions

Estimated bed expansion of AMBERLITE[™] HPR9500 Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE [™] HPR9500 as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

OUPONT AMBERLITE™ HPR4800 CI Ion Exchange Resin Uniform Particle Size, Gel, Strong Base Anion Exchange Resin for Industrial **Demineralization Applications** AMBERLITE[™] HPR4800 CI Ion Exchange Resin is a high-Description quality resin for use in industrial demineralization applications when high performance and cost-effective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and rinse water usage. AMBERLITE™ HPR4800 CI is compatible with all system technologies; it has the flexibility to be used in the lead single anion bed and in mixed bed polishers. In mixed bed applications, the particle size is designed to enhance separability, and the light color of this anion resin allows easy visual distinction from the dark-colored cation resin following backwash separation. Recommended pairing in mixed bed applications: **Resin Pairings** AMBERLITE[™] HPR1200 H Ion Exchange Resin (gel) AMBERLITE™ HPR1300 H Ion Exchange Resin (gel) Demineralization **Applications** Ideally when treating water with: High percentage of silica - When the treatment goal is: Removal of strong and weak acids Lowest silica leakage Mixed bed polishing Compatible with all system technologies: System Designs Co-current Counter-current / Hold-down Packed beds Mixed beds

HistoricalAMBERLITE™ HPR4800 CI Ion Exchange Resin has previously been sold as DOWEXReferenceMARATHON™ A CI Ion Exchange Resin.

Typical Properties

Physical Properties		
Copolymer	Styrene-divinylbenzene	
Matrix	Gel	
Туре	Strong base anion, Type I	
Functional Group	Trimethylammonium	
Physical Form	Amber, translucent, spherical beads	
Chemical Properties		
Ionic Form as Shipped	CI	
Total Exchange Capacity	≥ 1.3 eq/L (Cl [¯] form)	
Water Retention Capacity	49.0-58.0% (Cl ⁻ form)	
Particle Size [§]		
Particle Diameter	575 ± 50 μm	
Uniformity Coefficient	≤1.1	
< 300 µm	≤0.3%	
> 850 μm	≤ 1.0%	
Stability		
Whole Uncracked Beads	≥95%	
Swelling	$CI^- \rightarrow OH^-$: 20%	
Density		
Particle Density	1.08 g/mL	
Shipping Weight	670 g/L	

§ For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 177-01775).

Suggested
Operating
Conditions

Temperature Range		
OH [−] form [‡]	5–60°C (41–140°F)	
Cl⁻ form	5-100°C (41-212°F)	
pH Range		
Service Cycle	1 – 14	
Stable	0-14	

[‡] Operating at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact resin life. Contact our technical representative for details.

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>mixed beds</u> (Form No. 177-03705) or <u>separate</u> beds (Form No. 177-03729) in water treatment, please refer to our Tech Facts.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE™ HPR4800 CI Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR4800 CI as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

OUPONT>

AMBERLITE™ HPR4800 OH Ion Exchange Resin

Uniform Particle Size, Gel, Strong Base Anion Exchange Resin for Industrial Demineralization Applications

Description AMBERLITE[™] HPR4800 OH Ion Exchange Resin is a highquality resin for use in industrial demineralization applications when high performance, high purity water, and cost-effective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and rinse water usage.

AMBERLITE [™] HPR4800 OH is compatible with all system technologies; it has the flexibility to be used in the lead single anion bed and in mixed bed polishers. The OH-form offers a quick start-up in single beds. In mixed bed applications, the particle size is designed to enhance separability, and the light color of this anion resin allows easy visual distinction from the dark-colored cation resin following backwash separation.

Resin Pairings Recommended pairing in mixed bed applications:

- AMBERLITE™ HPR1200 H Ion Exchange Resin (gel)
 - AMBERLITE™ HPR1300 H Ion Exchange Resin (gel)

Applications	 Demineralization Ideally when treating water with: High percentage of silica When the treatment goal is:
System Designs	Compatible with all system technologies: Co-current Counter-current / Hold-down Packed beds Mixed beds

HistoricalAMBERLITE™ HPR4800 OH Ion Exchange Resin has previously been sold as
DOWEX MARATHON™ A OH Ion Exchange Resin.

Typical Properties

Physical Properties			
Copolymer	Styrene-divinylbenzene		
Matrix	Gel		
Туре	Strong base anion, Type I		
Functional Group	Trimethylammonium		
Physical Form	Amber, translucent, spherical beads		
Chemical Properties			
Ionic Form as Shipped	OH⁻		
Total Exchange Capacity	≥ 1.0 eq/L (OH [−] form)		
Water Retention Capacity	58.0 – 74.0% (OH ⁻ form)		
Ionic Conversion			
OH⁻	≥95%		
CO3 ²⁻	≤5%		
Particle Size [§]			
Particle Diameter	$610\pm50\mu m$		
Uniformity Coefficient	≤1.1		
< 300 µm	≤0.3%		
> 850 µm	≤ 1.0%		
Stability			
Whole Uncracked Beads	≥95%		
Swelling	$CI^- \rightarrow OH^-: 20\%$		
Density			
Particle Density	1.07 g/mL		
Shipping Weight	640 g/L		

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Suggested Operating Conditions

Hydraulic

Characteristics

Temperature Range		
OH ⁻ form [‡]	5-60°C (41-140°F)	
Cl [−] form	5-100°C (41-212°F)	
pH Range		
Service Cycle	1-14	
Stable	0-14	

[‡] Operating at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact resin life. Contact our technical representative for details.

Estimated bed expansion of AMBERLITE[™] HPR4800 OH Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE [™] HPR4800 OH as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

0.0

Temperature = $10 - 60^{\circ}C(50 - 140^{\circ}F)$ gpm/ft² 4 8 12 16 20 24 28 32 36 40 0 1.5 6.0 5.0 1.0 Pressure Drop bar/m 40°C 4.0 psi/ft ₀°c 3.0 0.5 2.0 1.0

0 10 20 30 40 50 60 70 80 90 100

m/h

Flowrate

0.0

Figure 2: Pressure Drop

OUPONT

AMBERLITE™ HPR550 CI Ion Exchange Resin

Uniform Particle Size, Gel, Strong Base Anion Exchange Resin for Condensate Polishing and Mixed Bed Demineralization Applications for the Power Industry

Description AMBERLITE[™] HPR550 CI Ion Exchange Resin is a premiumquality, high-capacity resin specifically designed for use in high purity industrial demineralization applications and condensate polishing beds at power stations when the chloride-form is preferred by the user.

This resin provides exceptional bead integrity and rapid exchange kinetics due to its small average particle size, making

it ideally suited to the high flowrate demands commonly encountered in power plant condensate polishing systems. The bead size uniformity and a distinguishable light color is tailored to complement the larger, denser, cationic, gel AMBERLITE™ HPR650 H Ion Exchange Resin. The color distinction between this pair of resins allows easy visual confirmation of separation following backwash.

For post-RO mixed bed polishing with a strict silica specification and/or the need to maximize silica removal capacity, AMBERLITE[™] HPR550 CI is an alternative to the OH-form.

Resin Pairings Recommended pairing:

• AMBERLITE[™] HPR650 H Ion Exchange Resin (gel)

Additional options:

- AMBERLITE™ HPR1600 H Ion Exchange Resin (gel)
- AMBERLITE[™] HPR2000 H Ion Exchange Resin (macroporous) in external regeneration systems

Applications

- Mixed bed condensate polishing in fossil power plants
- Mixed bed polishing in industrial demineralization
 - Demineralization
 - Ideally when treating water with:
 - High percentage of silica
 - When the treatment goal is:
 - Removal of strong and weak acids
 - Lowest silica leakage
 - Single bed industrial demineralization requiring high water purity

Historical Reference AMBERLITE[™] HPR550 CI Ion Exchange Resin has previously been sold as DOWEX MONOSPHERE[™] 550A Ion Exchange Resin.

Typical Properties

Physical Properties				
Copolymer	Styrene-divinylbenzene			
Matrix	Gel			
Туре	Strong base anion			
Functional Group	Trimethylammonium			
Physical Form	White to yellow, translucent, spherical beads			
Chemical Properties				
Ionic Form as Shipped	CI⁻			
Total Exchange Capacity	≥ 1.35 eq/L (Cl ⁻ form)			
Water Retention Capacity	42.0-49.0% (Cl ⁻ form)			
Particle Size §				
Particle Diameter	$550\pm50\mu m$			
Uniformity Coefficient	≤1.1			
< 300 µm	≤0.5%			
> 850 µm	≤1.0%			
Stability				
Whole Uncracked Beads	≥95%			
Friability:				
Average	≥ 350 g/bead			
> 200 g/bead	≥95%			
Swelling	$Cl^- \rightarrow OH^- \leq 25\%$			
Density				
Particle Density	1.09 g/mL			
Shipping Weight	690 g/L			

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Temperature Range (OH ⁻ form) ‡	5-100°C (41-212°F)
pH Range (Stable)	0-14

[‡] Operating at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact the purity of the loop and resin life. Contact our technical representative for details.

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>mixed beds</u> (Form No. 177-03705) or <u>separate</u> beds (Form No. 177-03729) in water treatment, please refer to our Tech Facts.

Hydraulic Characteristics

Suggested Operating Conditions

Estimated bed expansion of AMBERLITE[™] HPR550 CI Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR550 CI as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

Figure 1: Backwash Expansion Temperature = 10 – 60°C (50 – 140°F)

▲ OUPONT AMBERLITE[™] HPR550 OH Ion Exchange Resin

Uniform Particle Size, Gel, Strong Base Anion Exchange Resin for Condensate Polishing and Mixed Bed Demineralization Applications for the Power Industry

Description AMBERLITE [™] HPR550 OH Ion Exchange Resin is a premiumquality, high-capacity resin designed specifically for use in nuclear condensate polishing mixed beds when highest resin purity and water quality are required.

This resin provides exceptional bead integrity and rapid exchange kinetics due to its small average particle size, making it ideally suited to the high flowrate demands commonly

encountered in power plant condensate polishing systems. The bead size uniformity and a distinguishable light color is tailored to complement the larger, denser, cationic, gel AMBERLITE ™ HPR650 H Ion Exchange Resin. The color distinction between this pair of resins allows easy visual confirmation of separation following backwash. Together, these resins offer exceptional separation in mixed beds, which combined with excellent water quality and resin purity, has made them known throughout the industry as a premium mixed bed pairing.

Resin Pairings

Recommended pairing:

• AMBERLITE[™] HPR650 H Ion Exchange Resin (gel)

Additional options:

- AMBERLITE[™] HPR1600 H Ion Exchange Resin (gel)
- AMBERLITE[™] HPR2000 H Ion Exchange Resin (macroporous) in external regeneration systems

Applications

- Mixed bed condensate polishing in PWR nuclear power plants
- Mixed bed condensate polishing in fossil power plants
- Mixed bed polishing in industrial demineralization
- Demineralization
 - Ideally when treating water with:
 - High percentage of silica
 - When the treatment goal is:
 - Removal of strong and weak acids
 - Lowest silica leakage
 - Single bed industrial demineralization requiring high water purity

Historical Reference AMBERLITE[™] HPR550 OH Ion Exchange Resin has previously been sold as DOWEX MONOSPHERE[™] 550A (OH) Ion Exchange Resin.

Typical Properties

Filysical Froperties			
Copolymer	Styrene-divinyl	benzene	
Matrix	Gel		
Туре	Strong base anion		
Functional Group	Trimethylammonium		
Physical Form	White to yellow, translucent, spherical beads		
Chemical Properties			
Ionic Form as Shipped	OH⁻		
Total Exchange Capacity	≥ 1.1 eq/L (OH	form)	
Water Retention Capacity	55.0-65.0%(0	OH [−] form)	
Ionic Conversion			
OH⁻	≥95%		
CO3 ²⁻	≤5%		
CI⁻	≤0.5%		
Particle Size §			
Particle Diameter	$590\pm50\mu m$		
Uniformity Coefficient	≤ 1.10		
< 300 µm	≤0.5%		
> 850 µm	≤ 1.0%		
Purity			
Metals, dry basis:			
Na	≤ 50 mg/kg	Са	≤ 50 mg/kg
К	≤ 50 mg/kg	Mg	≤ 50 mg/kg
Fe	≤ 50 mg/kg	AI	≤ 50 mg/kg
Cu	≤ 10 mg/kg	Heavy Metals (as Pb)	≤ 10 mg/kg
Stability			
Whole Uncracked Beads	≥95%		
Friability:			
Average	≥ 350 g/bead		
>200 g/bead	≥95%		
Swelling	$CI^- \rightarrow OH^- \le 25$	%	
Density			
Particle Density	1.08 g/mL		
Shipping Weight	660 g/L		
Temperature Range (OH ⁻ form) [‡]		5–100°C (41–212°F)	
pH Range (Stable)		0-14	

Suggested Operating Conditions

[‡] Operating at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact the purity of the loop and resin life. Contact our technical representative for details.

Hydraulic Characteristics Estimated bed expansion of AMBERLITE[™] HPR550 OH Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR550 OH as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

AMBERLITE™ HPR4100 CI

OUPONT>

AMBERLITE™ HPR4100 CI Ion Exchange Resin

Uniform Particle Size, Gel, Strong Base Anion (Type II) Exchange Resin for Industrial Demineralization Applications

Description AMBERLITE [™] HPR4100 CI Ion Exchange Resin is a highquality resin for use in industrial demineralization applications when a balance of operating performance and simple, costeffective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, reducing chemical regenerant and rinse water usage while maintaining a superior physical stability.

Compared to a Type I strong base anion resin, a Type II resin will yield greater operating capacity due to more complete regeneration. It is best-suited to treat water in which silica and carbon dioxide do not exceed 30% of the total anions and the service and caustic regeneration temperature does not consistently exceed 35°C (95°F).

For systems that require low silica in the effluent or that operate in higher temperatures, a Type I strong base anion resin is recommended, such as:

- AMBERLITE[™] HPR4200 CI or OH Ion Exchange Resin
- AMBERLITE™ HPR4800 CI or OH Ion Exchange Resin

Applications

- Demineralization, when the treatment goal is:
 Removal of strong and weak acids
- Dealkalization
- System Designs
- Counter-current / Hold-down
- Packed beds

Co-current

Historical Reference

AMBERLITE[™] HPR4100 CI Ion Exchange Resin has previously been sold as DOWEX MARATHON[™] A2 Ion Exchange Resin.

Typical Properties

Physical Properties				
Copolymer	Styrene-divinylbenzene			
Matrix	Gel			
Туре	Strong base anion, Type II			
Functional Group	Dimethylethanolammonium			
Physical Form	White to amber, translucent, spherical beads			
Chemical Properties				
Ionic Form as Shipped	CI			
Total Exchange Capacity	≥ 1.2 eq/L (Cl ⁻ form)			
Water Retention Capacity	45.0 – 54.0% (Cl [−] form)			
Particle Size [§]				
Particle Diameter	$550 \pm 50 \mu\text{m}$			
Uniformity Coefficient	≤1.1			
< 300 µm	≤0.3%			
> 850 µm	≤ 1.0%			
Stability				
Whole Uncracked Beads	≥95%			
Swelling	$CI^- \rightarrow OH^-$: 15%			
Density				
Particle Density	1.10 g/mL			
Shipping Weight	690 g/L			

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Temperature Range		
OH [−] form	5-35°C (41-95°F)	
Cl⁻form	5-80°C (41-176°F)	
pH Range		
Service Cycle	1-14	
Stable	0-14	

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Suggested Operating Conditions

Estimated bed expansion of AMBERLITE[™] HPR4100 CI Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE [™] HPR4100 CI as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

Figure 2: Pressure Drop Temperature = 10 - 60°C (50 - 140°F)

AMBERLITE™ HPR2900 Na

OUPONT>

AMBERLITE™ HPR2900 Na Ion Exchange Resin

Uniform Particle Size, Macroporous, Strong Acid Cation Exchange Resin for Industrial Softening Applications

Description AMBERLITE[™] HPR2900 Na Ion Exchange Resin is a robust, high-quality resin for use in industrial softening applications when a combination of exceptional physical stability, simple and reliable operation, and long resin life is required.

Its high degree of crosslinking provides exceptional stability, which gives it great resistance to chemical oxidation and to mechanical, thermal, or osmotic stress. The properties of this macroporous resin have been designed for optimal kinetics.

AMBERLITE [™] HPR2900 Na is recommended for hot process softeners, sodium-cycle or amine-cycle condensate treatment, and other systems involving appreciable oxidative potential or high temperatures.

AMBERLITE[™] HPR2900 Na is available for demineralization applications when the sodium-form is preferred by the user.

Applications

- Industrial softening, ideally when treating water with:
 - High oxidant level
 - High temperature on the cation resin
 - Sodium-cycle or amine-cycle condensate treatment
 - Hot process softening
 - Demineralization (when the sodium-form is preferred by the user)

System Designs

- Co-current
- Counter-current / Hold-down
- Packed beds

HistoricalAMBERLITE™ HPR2900 Na Ion Exchange Resin has previously been sold as DOWEXReferenceMARATHON™ MSC Na Ion Exchange Resin.

Typical Properties

Physical Properties	
Copolymer	Styrene-divinylbenzene
Matrix	Macroporous
Туре	Strong acid cation
Functional Group	Sulfonic acid
Physical Form	White, opaque, spherical beads
Chemical Properties	
Ionic Form as Shipped	Na ⁺
Total Exchange Capacity	≥ 1.8 eq/L (Na⁺ form)
Water Retention Capacity	46.0-52.0% (Na ⁺ form)
Particle Size [§]	
Particle Diameter	550 ± 50 μm
Uniformity Coefficient	≤ 1.10
< 300 µm	≤0.3%
> 850 µm	≤3.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$Ca^{2+} \rightarrow Na^+: 3\%$
	$Na^+ \rightarrow H^+: 4\%$
Density	
Particle Density	1.28 g/mL
Shipping Weight	785 g/L

^S For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Temperature Range (Na ⁺ form)	5-150°C (41-302°F)	
pH Range		
Service Cycle	1 – 14	
Stable	0-14	

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Suggested Operating Conditions

Estimated bed expansion of AMBERLITE[™] HPR2900 Na Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR2900 Na as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

AMBERLITE™ HPR2900 H Ion Exchange Resin

Uniform Particle Size, Macroporous, Strong Acid Cation Exchange Resin for Industrial Demineralization Applications

Description	AMBERLITE™ HPR2900 H Ion Exchange Resin is a robust,	
	high-quality resin for use in industrial demineralization	
	applications when a combination of exceptional physical	Y
	stability, simple and reliable operation, and long resin life is	Y
	required.	
		4

Its high degree of crosslinking provides exceptional stability, which gives it great resistance to chemical oxidation and to mechanical, thermal, or osmotic stress. The properties of this macroporous resin have been designed for optimal kinetics.

AMBERLITE[™] HPR2900 Na Ion Exchange Resin is available for industrial softening or demineralization applications when the sodium-form is preferred by the user.

Applications
 Systems requiring exceptionally high osmotic stability
 Demineralization, ideally when treating water with:

 High oxidant level
 High temperature on the cation resin
 Amine-cycle condensate treatment

 System Designs

 Co-current
 Counter-current / Hold-down
 Packed beds

Historical **Reference**

AMBERLITE[™] HPR2900 H Ion Exchange Resin has previously been sold as DOWEX MARATHON[™] MSC H Ion Exchange Resin.

Typical Properties

Physical Properties	
Copolymer	Styrene-divinylbenzene
Matrix	Macroporous
Туре	Strong acid cation
Functional Group	Sulfonic acid
Physical Form	White, opaque, spherical beads
Chemical Properties	
Ionic Form as Shipped	H⁺
Total Exchange Capacity	≥ 1.7 eq/L (H ⁺ form)
Water Retention Capacity	50.0-56.0% (H ⁺ form)
Particle Size [§]	
Particle Diameter	575 ± 50 μm
Uniformity Coefficient	≤1.10
< 300 µm	≤0.3%
> 850 µm	≤3.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$Na^+ \rightarrow H^+: 4\%$
Density	
Particle Density	1.20 g/mL
Shipping Weight	770 g/L

[§] For additional particle size information, please refer to the <u>Particle Size Distribution Cross Reference Chart</u> (Form No. 177-01775).

Temperature Range (H ⁺ form)	5–120°C (41–248°F)
pH Range	
Service Cycle	1 – 14
Stable	0-14

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Suggested Operating Conditions

Estimated bed expansion of AMBERLITE[™] HPR2900 H Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR2900 H as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

Figure 2: Pressure Drop Temperature = $10-60^{\circ}C(50-140^{\circ}F)$

AMBERLITE™ HPR9200 CL

< DU	PONT
------	------

AMBERLITE™ HPR9200 CI Ion Exchange Resin

Uniform Particle Size, Macroporous, Strong Base Anion Exchange Resin for Industrial Demineralization Applications

Description	AMBERLITE™ HPR9200 CI Ion Exchange Resin is a robust,
	high-quality resin for use in industrial demineralization
	applications when a combination of exceptional physical stability, simple and reliable operation, and long resin life is
	required.

AMBERLITE[™] HPR9200 CI has exceptional physical stability, excellent resistance to osmotic shock, and very good organic fouling resistance. It is well-suited for use in demineralization of high organic waters.

AMBERLITE[™] HPR9200 CI is compatible with all system technologies; it has the flexibility to be used in lead single or in mixed bed polishers. In mixed bed applications, the light color of this anion resin is designed to allow easy visual distinction from the dark-colored cation resin following backwash separation.

Resin Pairings Recommended pairing:

- AMBERLITE[™] HPR1300 H Ion Exchange Resin (gel)
- AMBERLITE ™ HPR2800 H Ion Exchange Resin (macroporous)

Applications • Demineralization

- Ideally when treating water with:
 - High organic fouling potential
- High percentage of silica
- When the treatment goal is:
 - Removal of strong and weak acids
 - Lowest silica leakage
- Mixed bed polishing

System Designs Compatible with all system technologies: • Co-current

- Counternument / L
 - Counter-current / Hold-down
 Packed beds
 - Mixed beds
 - IVIIXed beds

HistoricalAMBERLITE™ HPR9200 CI Ion Exchange Resin has previously been sold as
DOWEX MARATHON™ MSA Ion Exchange Resin.

Typical Properties

Physical Properties	
Copolymer	Styrene-divinylbenzene
Matrix	Macroporous
Туре	Strong base anion, Type I
Functional Group	Trimethylammonium
Physical Form	White, opaque, spherical beads
Chemical Properties	
Ionic Form as Shipped	CΓ
Total Exchange Capacity	≥ 1.1 eq/L (Cl [−] form)
Water Retention Capacity	56.0-66.0% (Cl ⁻ form)
Particle Size [§]	
Particle Diameter	640 ± 50 μm
Uniformity Coefficient	≤1.1
< 300 µm	≤0.3%
> 850 µm	≤1.0%
Stability	
Whole Uncracked Beads	≥95%
Swelling	$CI^- \rightarrow OH^-$: 15%
Density	
Particle Density	1.06 g/mL
Shipping Weight	675 g/L

§ For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 177-01775).

Suggested Operating Conditions

Temperature Range			
OH [−] form [‡]	5-60°C (41-140°F)		
Cl [−] form	5–100°C (41–212°F)		
pH Range			
Service Cycle	1 – 14		
Stable	0-14		

[‡] Operating at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact resin life. Contact our technical representative for details.

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>mixed beds</u> (Form No. 177-03705) or <u>separate</u> beds (Form No. 177-03729) in water treatment, please refer to our Tech Facts.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE[™] HPR9200 CI Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR9200 Cl as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

AMBERLITE™ HPR4811 CL

Uniform Particle Size, Gel, Strong Base Anion Exchange Resin for Industrial Demineralization Applications

Description AMBERLITE[™] HPR4811 CI Ion Exchange Resin is a high-quality resin for use in industrial demineralization applications when high performance and cost-effective operation is required. The chemical properties and particle size of the resin have been optimized to help yield excellent operating capacity and rinse characteristics, while reducing chemical regenerant and rinse water usage.

AMBERLITE [™] HPR4811 CI provides high capacity with excellent kinetics and very good resistance to organic fouling. It also has excellent resistance to osmotic shock and good physical and chemical stability. Its unique resistance to organic fouling enables this resin to be used in CI-form as an organic scavenger with great success in a single bed unit.

Historical **Reference**

AMBERLITE[™] HPR4811 CI Ion Exchange Resin has previously been sold as DOWEX MARATHON[™] 11 Ion Exchange Resin.

Typical Properties

Physical Properties		
Copolymer	Styrene-divinylbenzene	
Matrix	Gel	
Туре	Strong base anion, Type I	
Functional Group	Trimethylammonium	
Physical Form	Amber, translucent, spherical beads	
Chemical Properties		
Ionic Form as Shipped	CI	
Total Exchange Capacity	≥ 1.3 eq/L (Cl [−] form)	
Water Retention Capacity	50.0-60.0% (Cl ⁻ form)	
Particle Size [§]		
Particle Diameter	550 ± 50 μm	
Uniformity Coefficient	≤ 1.10	
< 300 µm	≤0.3%	
> 850 µm	≤1.0%	
Stability		
Whole Uncracked Beads	≥95%	
Swelling	$CI^- \rightarrow OH^-$: 20%	
Density		
Particle Density	1.08 g/mL	
Shipping Weight	675 g/L	

§ For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 177-01775).

Suggested Operating Conditions

Temperature Range		
OH^{-} form [‡]	5-60°C (41-140°F)	
Cl ⁻ form	5-100°C (41-212°F)	
pH Range		
Service Cycle (demineralization)	1 – 14	
Service Cycle (scavenging)	2-10	
Stable	0-14	

[‡] Operating at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact resin life. Contact our technical representative for details.

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>separate beds</u> (Form No. 177-03729) in water treatment, please refer to our Tech Fact.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE[™] HPR4811 CI Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] HPR4811 CI as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

AMBERLITE[™] 600i

OUPONT

AMBERLITE™ 600i Inert Resin

	Uniform Particle Size, Ac	rylic, Inert Resin for Condensate Polishing for the Power	
	Industry and Industrial De	emineralization Applications	
Description	AMBERLITE [™] 600i Inert Resin is a non-functionalized, spherical resin used in mixed beds. Its density and particle size are tightly controlled to have a terminal settling velocity that is intermediate to those of the cation exchange resin and anion exchange resin, creating an inert zone between the functional resins wherein the regenerant is collected. This inert zone reduces the risk of cross-regeneration, improving water quality and rinse time whether it is used in internally- or externally-regenerated mixed bed systems.		
	AMBERLITE [™] 600i is used in condensate polishing systems for the electrical power generation industry and in other high-purity mixed bed systems.		
Applications	 Mixed bed condensate polishing in fossil power plants Mixed bed polishing in industrial demineralization 		
System Designs	Mixed beds		
Historical Reference	AMBERLITE ™ 600i Inert Resin has previously been sold as DOWEX MONOSPHERE ™ 600i Inert Resin.		
Typical Properties	Physical Properties		
	Copolymer	Crosslinked acrylic	
	Туре	Inert	
	Functional Group	None	
	Physical Form	Brown to amber, opaque, spherical beads	
	Particle Size [§]		
	Particle Diameter	$600\pm50\mu m$	
	Uniformity Coefficient	≤1.2	
	Density		
	Particle Density	1.15 g/mL	
		703g/L	
	[§] For additional particle size infor (Form No. 177-01775).	mation, please refer to the Particle Size Distribution Cross Reference Chart	
Suggested	Temperature Range	5-120°C (41-248°F)	
Operating	pHRange	0-14	
Conditions	For additional information	regarding recommended minimum bed depth, operating	
	conditions, and regenerat	ion conditions for mixed peas (Form No. 177-03705) or separate	

beds (Form No. 177-03729) in water treatment, please refer to our Tech Facts.

Hydraulic Characteristics

Estimated bed expansion of AMBERLITE[™] 600i Inert Resin as a function of backwash flowrate and temperature is shown in Figure 1.

Estimated pressure drop for AMBERLITE[™] 600i as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water.

Product Stewardship DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products— from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice

DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

Please be aware of the following:

 WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.